Database Retrieval System V1.0

Name dsrO
Function
Reduction of DsrC trisulfide, thereby linking cytoplasmic reduction of sulfite to energy conservation at membrane; reverse function in sulfur oxidation.
Definition Sulfite reduction-associated complex DsrMKJOP iron-sulfur protein DsrO
AA seq
MSMKSDQPDMNRRKLLGTTLAASGAVVVAPGVLLHGVAGAGTATEGASSKHRWGMLIDAN KCADGCSACVDACNQEHGLTSHGRPETDAQWIRTVKLRDLHTGRENRLVMMCQHCETPPC VDVCPTGASFKRADGIVLVDRHRCIGCRYCMMACPYKARSFVHETLENQSINQPRGKGCV EGCTLCVHRIDRGELVTACQEACAKEGHNAILFGDLNDPESDLSEALREHNSQQIRADLK LNTGVRYTNI254
Structure
Reference
PMIDTitle & AuthorAbstractYear
016388601Characterization of the Desulfovibrio desulfuricans ATCC 27774 DsrMKJOP complex--a membrane-bound redox complex involved in the sulfate respiratory pathway. Pires RH, Venceslau SS, Morais F, Teixeira M, Xavier AV, Pereira IA. Sulfate-reducing organisms use sulfate as an electron acceptor in an anaerobic respiratory process. Despite their ubiquitous occurrence, sulfate respiration is still poorly characterized. Genome analysis of sulfate-reducing organisms sequenced to date permitted the identification of only two strictly conserved membrane complexes. We report here the purification and characterization of one of these complexes, DsrMKJOP, from Desulfovibrio desulfuricans ATCC 27774. The complex has hemes of the c and b types and several iron-sulfur centers. The corresponding genes in the genome of Desulfovibrio vulgaris were analyzed. dsrM encodes an integral membrane cytochrome b; dsrK encodes a protein homologous to the HdrD subunit of heterodisulfide reductase; dsrJ encodes a triheme periplasmic cytochrome c; dsrO encodes a periplasmic FeS protein; and dsrM encodes another integral membrane protein. Sequence analysis and EPR studies indicate that DsrJ belongs to a novel family of multiheme cytochromes c and that its three hemes have different types of coordination, one bis-His, one His/Met, and the third a very unusual His/Cys coordination. The His/Cys-coordinated heme is only partially reduced by dithionite. About 40% of the hemes are reduced by menadiol, but no reduction is observed upon treatment with H2 and hydrogenase, irrespective of the presence of cytochrome c3. The aerobically isolated Dsr complex displays an EPR signal with similar characteristics to the catalytic [4Fe-4S]3+ species observed in heterodisulfide reductases. Further five different [4Fe-4S](2+/1+) centers are observed during a redox titration followed by EPR. The role of the DsrMKJOP complex in the sulfate respiratory chain of Desulfovibrio spp. is discussed.2006
129476143Peatland Acidobacteria with a dissimilatory sulfur metabolism. Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Glavina Del Rio T, Huemer M, Nielsen PH, Rattei T, Stingl U, Tringe SG, Trojan D, Wentrup C, Woebken D, Pester M, Loy A.Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation. 2018
220952577Biochemical characterization of individual components of the Allochromatium vinosum DsrMKJOP transmembrane complex aids understanding of complex function in vivo.Fabian Grein , Inês A C Pereira, Christiane DahlThe DsrMKJOP transmembrane complex has a most important function in dissimilatory sulfur metabolism and consists of cytoplasmic, periplasmic, and membrane integral proteins carrying FeS centers and b- and c-type cytochromes as cofactors. In this study, the complex was isolated from the purple sulfur bacterium Allochromatium vinosum and individual components were characterized as recombinant proteins. The two integral membrane proteins DsrM and DsrP were successfully produced in Escherichia coli C43(DE3) and C41(DE3), respectively. DsrM was identified as a diheme cytochrome b, and the two hemes were found to be in low-spin state. Their midpoint redox potentials were determined to be +60 and +110 mV. Although no hemes were predicted for DsrP, it was also clearly identified as a b-type cytochrome. To the best of our knowledge, this is the first time that heme binding has been experimentally proven for a member of the NrfD protein family. Both cytochromes were partly reduced after addition of a menaquinol analogue, suggesting interaction with quinones in vivo. DsrO and DsrK were both experimentally proven to be FeS-containing proteins. In addition, DsrK was shown to be membrane associated, and we propose a monotopic membrane anchoring for this protein. Coelution assays provide support for the proposed interaction of DsrK with the soluble cytoplasmic protein DsrC, which might be its substrate. A model for the function of DsrMKJOP in the purple sulfur bacterium A. vinosum is presented.2010
318829451The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IA, Archer M. Sulfate reduction is one of the earliest types of energy metabolism used by ancestral organisms to sustain life. Despite extensive studies, many questions remain about the way respiratory sulfate reduction is associated with energy conservation. A crucial enzyme in this process is the dissimilatory sulfite reductase (dSiR), which contains a unique siroheme-[4Fe4S] coupled cofactor. Here, we report the structure of desulfoviridin from Desulfovibrio vulgaris, in which the dSiR DsrAB (sulfite reductase) subunits are bound to the DsrC protein. The alpha(2)beta(2)gamma(2) assembly contains two siroheme-[4Fe4S] cofactors bound by DsrB, two sirohydrochlorins and two [4Fe4S] centers bound by DsrA, and another four [4Fe4S] centers in the ferredoxin domains. A sulfite molecule, coordinating the siroheme, is found at the active site. The DsrC protein is bound in a cleft between DsrA and DsrB with its conserved C-terminal cysteine reaching the distal side of the siroheme. We propose a novel mechanism for the process of sulfite reduction involving DsrAB, DsrC, and the DsrMKJOP membrane complex (a membrane complex with putative disulfide/thiol reductase activity), in which two of the six electrons for reduction of sulfite derive from the membrane quinone pool. These results show that DsrC is involved in sulfite reduction, which changes the mechanism of sulfate respiration. This has important implications for models used to date ancient sulfur metabolism based on sulfur isotope fractionations. 2008
416104868Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Haveman SA, Greene EA, Voordouw G. Sulfate-reducing bacteria (SRB) are inhibited by nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB) in the presence of nitrate. This inhibition has been attributed either to an increase in redox potential or to production of nitrite by the NR-SOB. Nitrite specifically inhibits the final step in the sulfate reduction pathway. When the NR-SOB Thiomicrospira sp. strain CVO was added to mid-log phase cultures of the SRB Desulfovibrio vulgaris Hildenborough in the presence of nitrate, sulfate reduction was inhibited. Strain CVO reduced nitrate and oxidized sulfide, with transient production of nitrite. Sulfate reduction by D. vulgaris resumed once nitrite was depleted. A DNA macroarray with open reading frames encoding enzymes involved in energy metabolism of D. vulgaris was used to study the effects of NR-SOB on gene expression. Shortly following addition of strain CVO, D. vulgaris genes for cytochrome c nitrite reductase and hybrid cluster proteins Hcp1 and Hcp2 were upregulated. Genes for sulfate reduction enzymes, except those for dissimilatory sulfite reductase, were downregulated. Genes for the membrane-bound electron transferring complexes QmoABC and DsrMKJOP were downregulated and unaffected, respectively, whereas direct addition of nitrite downregulated both operons. Overall the gene expression response of D. vulgaris upon exposure to strain CVO and nitrate resembled that observed upon direct addition of nitrite, indicating that inhibition of SRB is primarily due to nitrite production by NR-SOB. 2005

Grein, F., Pereira, I.A., and Dahl, C. (2010) Biochemical characterization of individual components of the Allochromatium vinosum DsrMKJOP transmembrane complex aids understanding of complex function in vivo. J Bacteriol 192: 6369–6377.