Database Retrieval System V1.0

Name hdrD
Function
Heterodisulfide reductase (Hdr), is an iron-sulfur protein which in anaerobic methanogenic archaea catalyzes the reduction of the disulphide bond between coenzyme M and coenzyme B and is coupled to methane formation
Definition heterodisulfide reductase iron-sulfur subunit D
AA seq
MAKRNPSIDTKNLTAVQLMELDACVRCGECVKWCPTYAASGEKPGLAPRDKILRWRQYMN KSYGLKARLFGPQEIPISELEEFKDDVHGCTTCGICSTVCEAGINTVELWESMRANLVKK GIGPYGKQNMFPKLIGQYRNPYMKDQKDRLAWVPPDVKIEDKADIVYFTGCTAGYNQLAL AFATSRVLNKLGIKFAMLGEDEWCCGSALIRTGQAHINNVPYELAKHNVEAIQKKGAKKV LFACAGCFRAAKVDWPRLLGKELPFEVVHVSEFLAGLIKEGKIKWEKSINKTVTYHDPCH LGRHVGVFDAPRYVLSHIPGVKFVEMDRIKEFQRCCGAGGGVKAGLPDLAMAVAESRVKD ALDTKADILSSCCPFCKRNLMDGRDSLKVDLVVEDVIELVAEALNLETK415
Structure
Reference
PMIDTitle & AuthorAbstractYear
026573766Evidence for the involvement of two heterodisulfide reductases in the energy-conserving system of Methanomassiliicoccus luminyensis.Lena Kröninger Stefanie Berger Cornelia Welte Uwe DeppenmeierMethanomassiliicoccus luminyensis was isolated from the human gut, and requires H2 and methanol or methylamines to produce methane. The organism lacks cytochromes, indicating that it cannot couple membrane-bound electron transfer reactions with extrusion of H(+) or Na(+) ions using known methanogenic pathways. Furthermore, M. luminyensis contains a soluble hydrogenase/heterodisulfide reductase complex (MvhAGD/HdrABC) as found in obligate hydrogenotrophic methanogens, but the energy-conserving methyltransferase (MtrA-H) is absent. Thus, the question arises as to how this species synthesizes ATP. We present evidence that M. luminyensis uses two types of heterodisulfide reductases (HdrABC and HdrD) in a novel process for energy conservation. Quantitative RT-PCR studies revealed that genes encoding these heterodisulfide reductases showed high expression levels. Other genes with high transcript abundance were fpoA (part of the operon encoding the 'headless' F420 H2 dehydrogenase) and atpB (part of the operon encoding the A1 Ao ATP synthase). High activities of the soluble heterodisulfide reductase HdrABC and the hydrogenase MvhADG were found in the cytoplasm of M. luminyensis. Also, heterologously produced HdrD was able to reduce CoM-S-S-CoB using reduced methylviologen as an electron donor. We propose that membrane-bound electron transfer is based on conversion of two molecules of methanol and concurrent formation of two molecules of the heterodisulfide CoM-S-S-CoB. First the HdrABC/MvhADG complex catalyzes the H2 -dependent reduction of CoM-S-S-CoB and formation of reduced ferredoxin. In a second cycle, reduced ferredoxin is oxidized by the 'headless' F420 H2 dehydrogenase, thereby translocating up to 4 H(+) across the membrane, and electrons are channeled to HdrD for reduction of the second heterodisulfide.2015
115009189Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeon Archaeoglobus profundus.Gerd J. Mander Antonio J. Pierik Harald Huber Reiner HedderichHeterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H2/sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F420-nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with gxyz = 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H2 this signal was no longer detectable.2004
211952791Purification and characterization of a membrane-bound enzyme complex from the sulfate-reducing archaeon Archaeoglobus fulgidus related to heterodisulfide reductase from methanogenic archaea.Gerd J. Mander Evert C. Duin Dietmar Linder Karl O. Stetter Reiner HedderichHeterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. The genome of the sulfate-reducing archaeon Archaeoglobus fulgidus encodes several proteins of unknown function with high sequence similarity to the catalytic subunit of Hdr. Here we report on the purification of a multisubunit membrane-bound enzyme complex from A. fulgidus that contains a subunit related to the catalytic subunit of Hdr. The purified enzyme is a heme/iron-sulfur protein, as deduced by UV/Vis spectroscopy, EPR spectroscopy, and the primary structure. It is composed of four different subunits encoded by a putative transcription unit (AF499, AF501-AF503). A fifth protein (AF500) encoded by this transcription unit could not be detected in the purified enzyme preparation. Subunit AF502 is closely related to the catalytic subunit HdrD of Hdr from Methanosarcina barkeri. AF501 encodes a membrane-integral cytochrome, and AF500 encodes a second integral membrane protein. AF499 encodes an extracytoplasmic iron-sulfur protein, and AF503 encodes an extracytoplasmic c-type cytochrome with three heme c-binding motifs. All of the subunits show high sequence similarity to proteins encoded by the dsr locus of Allochromatium vinosum and to subunits of the Hmc complex from Desulfovibrio vulgaris. The heme groups of the enzyme are rapidly reduced by reduced 2,3-dimethyl-1,4-naphthoquinone (DMNH2), which indicates that the enzyme functions as a menaquinol-acceptor oxidoreductase. The physiological electron acceptor has not yet been identified. Redox titrations monitored by EPR spectroscopy were carried out to characterize the iron-sulfur clusters of the enzyme. In addition to EPR signals due to [4Fe-4S]+ clusters, signals of an unusual paramagnetic species with g values of 2.031, 1.994, and 1.951 were obtained. The paramagnetic species could be reduced in a one-electron transfer reaction, but could not be further oxidized, and shows EPR properties similar to those of a paramagnetic species recently identified in Hdr. In Hdr this paramagnetic species is specifically induced by the substrates of the enzyme and is thought to be an intermediate of the catalytic cycle. Hence, Hdr and the A. fulgidus enzyme not only share sequence similarity, but may also have a similar active site and a similar catalytic function.2003

Ehrenfeld N , Levicán, Gloria, Parada P . Heterodisulfide Reductase from Acidithiobacilli is a Key Component Involved in Metabolism of Reduced Inorganic Sulfur Compounds[J]. Advanced Materials Research, 2013, 825:194-197.