Database Retrieval System V1.0

Name sox
Function
Probably involved in sulfite oxidative detoxification. H2O + O2 + sulfite = H2O2 + sulfate
Definition Sulfite oxidase Sox
AA seq
MQCAGNRRTAMSKVRNVRGVGWDVSAIGNAVWGGAKLADVLELVGIPKLTASTNLGARHV EFVSVDRCKEENGGPYKASITLSQATNPEADVLLAYEMNGETLNRDHGFPLRVVVPGVIG ARSVKWLDSINVIAEESQGFFMQKDYKMFPPSVNWDNINWSSRRPQMDFPVQSAICSVED VQMVKPGKVSIKGYAVSGGGRGIERVDISLDGGKNWVEASRTQEPGKQYISEHSSSDKWA WVLFEATIDVSQTTEVIAKAVDSAANVQPENVESVWNLRGVLNTSWHRVLLRLGHSNL302
Structure
Reference
PMIDTitle & AuthorAbstractYear
028461726Insights into a key sulfite scavenger enzyme sulfite oxidase ( SOX) gene in plants. Filiz E, Vatansever R, Ozyigit II. Sulfite oxidase (SOX) is a crucial molybdenum cofactor-containing enzyme in plants that re-oxidizes the sulfite back to sulfate in sulfite assimilation pathway. However, studies of this crucial enzyme are quite limited hence this work was attempted to understand the SOXs in four plant species namely, Arabidopsis thaliana, Solanum lycopersicum, Populus trichocarpa and Brachypodium distachyon. Herein studied SOX enzyme was characterized with both oxidoreductase molybdopterin binding and Mo-co oxidoreductase dimerization domains. The alignment and motif analyses revealed the highly conserved primary structure of SOXs. The phylogeny constructed with additional species demonstrated a clear divergence of monocots, dicots and lower plants. In addition, to further understand the phylogenetic relationship and make a functional inference, a structure-based phylogeny was constructed using normalized RMSD values in five superposed models from four modelled plant SOXs herein and one previously characterized chicken SOX structure. The plant and animal SOXs showed a clear divergence and also implicated their functional divergences. Based on tree topology, monocot B. distachyon appeared to be diverged from other dicots, pointing out a possible monocot-dicot split. The expression patterns of sulfite scavengers including SOX were differentially modulated under cold, heat, salt and high light stresses. Particularly, they tend to be up-regulated under high light and heat while being down-regulated under cold and salt stresses. The presence of cis-regulatory motifs associated with different stresses in upstream regions of SOX genes was thus justified. The protein-protein interaction network of AtSOX and network enrichment with gene ontology (GO) terms showed that most predicted proteins, including sulfite reductase, ATP sulfurylases and APS reductases were among prime enzymes involved in sulfite pathway. Finally, SOX-sulfite docked structures indicated that arginine residues particularly Arg374 is crucial for SOX-sulfite binding and additional two other residues such as Arg51 and Arg103 may be important for SOX-sulfite bindings in plants. 2017
127788621The effect of ingested sulfite on active avoidance in normal and sulfite oxidase-deficient aged rats. Ozsoy O, Aras S, Ozkan A, Parlak H, Gemici B, Uysal N, Aslan M, Yargicoglu P, Agar A. The aim of this study was to investigate the possible toxic effects of sulfite on neurons by measuring active avoidance learning in normal and sulfite oxidase (SOX)-deficient aged rats. Twenty-four months of age Wistar rats were divided into four groups: control (C), sulfite-treated group (S), SOX-deficient group (D) and SOX-deficient + sulfite-treated group (DS). SOX deficiency was established by feeding rats with a low molybdenum (Mo) diet and adding 200 ppm tungsten (W) to their drinking water. Sulfite in the form of sodium metabisulfite (25 mg/kg) was given by gavage for six weeks. Active avoidance responses were determined by using an automated shuttle box. Hepatic SOX activity was measured to confirm SOX deficiency. The hippocampus was used for determining the activity of cyclooxygenase (COX) and caspase-3 enzymes and the level of prostaglandin E2 (PGE2) and nitrate/nitrite. SOX-deficient rats had an approximately 10-fold decrease in hepatic SOX activity compared with normal rats. Sulfite did not induce impairment of active avoidance learning in SOX-deficient rats and in normal rats compared with their control groups. Sulfite had no effect on the activity of COX and caspase-3 in the hippocampus. Treatment with sulfite did not significantly increase the level of PGE2 and nitrate/nitrite in the hippocampus. 2017
217613108Effect of ingested sulfite on hippocampus antioxidant enzyme activities in sulfite oxidase competent and deficient rats. Kucukatay V, Bor-Kucukatay M, Atsak P, Ağar A. Animal tissues are exposed to sulfite used as a preservative in food and drugs, and generated from the catabolism of sulfur-containing amino acids. Sulfite, which is a very reactive and potentially toxic molecule, is detoxified by the enzyme sulfite oxidase (SOX). Laboratory animals can be made deficient in SOX by the administration of a high-tungsten/low molybdenum regimen. It has been suggested that SOX deficient rats might be used as a model for the prediction of sulfite toxicity in humans. The aim of this study was to investigate the effects of ingested sulfite on hippocampus superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities in SOX competent and deficient rats. Hippocampus SOD, CAT and GPx activities were found to be significantly increased by sulfite treatment in SOX competent groups. On the other hand, exposure to sulfite had no effect on antioxidant status in hippocampus of SOX deficient rats. In conclusion, these results suggest that hippocampus antioxidant capacity where defense mechanism against the oxidative challenge is up regulated by sulfite in SOX competent rats. This up regulation mechanism in antioxidant enzymes against to sulfite related oxidative stress is not observed in SOX deficient rats and remains to be explained. 2007
315681120Effect of sulfite on cognitive function in normal and sulfite oxidase deficient rats. Küçükatay V, Savcioğlu F, Hacioğlu G, Yargiçoğlu P, Ağar A. Sulfites, which are commonly used as preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). The aim of this study was to investigate the possible toxic effects of sulfite on neurons by measuring active avoidance learning in normal and SOX-deficient rats. For this purpose, male albino rats used in this study were divided into eight groups such as control group (C), sulfite group (25 mg/kg) (S), vitamin E group (50 mg/kg) (E), sulfite (25 mg/kg)+vitamin E group (50 mg/kg) (SE), SOX-deficient group (D), deficient+vitamin E group (50 mg/kg) (DE), deficient+sulfite group (25 mg/kg) (DS) and deficient+sulfite (25 mg/kg)+vitamin E group (50 mg/kg) (DSE). Sulfite-induced impairment of active avoidance learning in SOX-deficient rats but not in normal rats. Sulfite had no effect on hippocampus TBARS levels in SOX normal groups. In SOX-deficient rats, TBARS levels were found to be significantly increased with sulfite exposure. Vitamin E reversed the observed detrimental effects of sulfite in the SOX-deficient rats on their hippocampal TBARS but not on their active avoidance learning. In conclusion, sulfite has neurotoxic effects in sulfite oxidase deficient rats, but this effect may not depend on oxidative stress. 2005
418842692Spinal reflexes in normal and sulfite oxidase deficient rats: effect of sulfite exposure. Küçükatay V, Genç O, Kocamaz E, Emmungil G, Erken H, Bagci H. Sulfites, which are commonly used as food preservatives, are continuously formed in the body during metabolism of sulfur-containing amino acids. Sulfite is oxidized to sulfate ion by sulfite oxidase (SOX, EC. 1.8.3.1). Although sulfite treatment has been reported to increase the excitability of some neurons in vitro, the possible effects of sulfite on neuronal excitability in vivo remain unclear. The aim of this study was to investigate the possible effects of sulfite treatment on spinal reflexes in anesthetized SOX competent and deficient rats. For this purpose, male albino rats used in this study were divided into four groups such as control group (C), sulfite group (CS), SOX deficient group (D), and SOX deficient + sulfite group (DS). Rats in SOX deficient groups were made deficient in SOX by the administration of low molybdenum (Mo) diet (AIN 76, Research Dyets Inc., USA) with concurrent addition of 200-ppm tungsten (W) to their drinking water in the form of sodium tungstate (NaWO4). Sulfite in the form of sodium metabisulfite (Na2O5S2, 70 mg/kg) was given orally by adding to drinking water to the S and DS groups. Monosynaptic reflex potentials were recorded from the ipsilateral L5 ventral root. SOX deficient rats had an approximately 15-fold decrease in hepatic SOX activity compared with normal rats. This makes SOX activity of SOXD rats in the range of human SOX activity. The results of this study show that sulfite treatment significantly increases the amplitude of the monosynaptic reflex response in both S and DS groups with respect to their respective control groups (C and D). SOX deficient rats also had enhanced spinal reflexes when compared with control rats. In conclusion, sulfite has increasing effects on the excitability of spinal reflexes and we speculate that this compound may exhibit its effects on nervous system by affecting sodium channels.2008

Nakamura T, Meyer C, Sano H. Molecular cloning and characterization of plant genes encoding novel peroxisomal molybdoenzymes of the sulphite oxidase family[J]. Journal of experimental botany, 2002, 53(375): 1833-1836. Eilers T, Schwarz G, Brinkmann H, et al. Identification and biochemical characterization of Arabidopsis thaliana sulfite oxidase. A new player in plant sulfur metabolism.[J]. Journal of Biological Chemistry, 2001, 276(50):46989.