Database Retrieval System V1.0

Name soxA
Function
C-type monoheme cytochrome, which is part of the SoxAX cytochrome complex involved in sulfur oxidation. The SoxAX complex catalyzes the formation of a heterodisulfide bond between the conserved cysteine residue on a sulfur carrier SoxYZ complex subunit SoxY and thiosulfate or other inorganic sulfur substrates. This leads to the liberation of two electrons, which may be transferred from the SoxAX complex to another cytochrome c and which then may be used for reductive CO2 fixation. 2 [Fe(III)cytochrome c] + L-cysteinyl-[SoxY protein] + thiosulfate = 2 [Fe(II)cytochrome c] + 2 H+ + S-sulfosulfanyl-L-cysteinyl-[SoxY protein]
Definition L-cysteine S-thiosulfotransferase [EC:2.8.5.2]
AA seq
MKKTIQRGLFTGALVLMTAMTAKPANAEVNYQALVDADVKAFQGFFRKEFPDVKLEDFGN GVYALDEDARKQWKEMEEFPPYELDVEAGKALFNKPFANGKSLASCFPNGGAVRGMYPYF DEKRKEVVTLEMAINECRVANGEKPYAWEKGDIARVSAYIASISRGQKVDVKVKSKAAYD AYMKGKKFFYAKRGQLNMSCSGCHMEYAGRHLRAEIISPALGHTTHFPVFRSKWGEIGTL HRRYAGCSNNIGAKPFAPQSEEYRDLEFFQTVMSNGLKYNGPASRK290
Structure
Reference
PMIDTitle & AuthorAbstractYear
018641134SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. Ogawa T, Furusawa T, Nomura R, Seo D, Hosoya-Matsuda N, Sakurai H, Inoue K. From the photosynthetic green sulfur bacterium Chlorobium tepidum (pro synon. Chlorobaculum tepidum), we have purified three factors indispensable for the thiosulfate-dependent reduction of the small, monoheme cytochrome c(554). These are homologues of sulfur-oxidizing (Sox) system factors found in various thiosulfate-oxidizing bacteria. The first factor is SoxYZ that serves as the acceptor for the reaction intermediates. The second factor is monomeric SoxB that is proposed to catalyze the hydrolytic cleavage of sulfate from the SoxYZ-bound oxidized product of thiosulfate. The third factor is the trimeric cytochrome c(551), composed of the monoheme cytochrome SoxA, the monoheme cytochrome SoxX, and the product of the hypothetical open reading frame CT1020. The last three components were expressed separately in Escherichia coli cells and purified to homogeneity. In the presence of the other two Sox factors, the recombinant SoxA and SoxX showed a low but discernible thiosulfate-dependent cytochrome c(554) reduction activity. The further addition of the recombinant CT1020 protein greatly increased the activity, and the total activity was as high as that of the native SoxAX-CT1020 protein complex. The recombinant CT1020 protein participated in the formation of a tight complex with SoxA and SoxX and will be referred to as SAXB (SoxAX binding protein). Homologues of the SAXB gene are found in many strains, comprising roughly about one-third of the thiosulfate-oxidizing bacteria whose sox gene cluster sequences have been deposited so far and ranging over the Chlorobiaciae, Chromatiaceae, Hydrogenophilaceae, Oceanospirillaceae, etc. Each of the deduced SoxA and SoxX proteins of these bacteria constitute groups that are distinct from those found in bacteria that apparently lack SAXB gene homologues. 2008
110940005Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H. The gene region coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17 is located on a 13-kb insert of plasmid pEG12. Upstream of the previously described six open reading frames (ORFs) soxABCDEF with a partial sequence of soxA and soxF (C. Wodara, F. Bardischewsky, and C. G. Friedrich, J. Bacteriol. 179:5014-5023, 1997), 4,350 bp were sequenced. The sequence completed soxA, and uncovered six new ORFs upstream of soxA, designated ORF1, ORF2, and ORF3, and soxXYZ. ORF1 could encode a 275-amino-acid polypeptide of 29,332 Da with a 61 to 63% similarity to LysR transcriptional regulators. ORF2 could encode a 245-amino-acid polypeptide of 26,022 Da with the potential to form six transmembrane helices and with a 48 to 51% similarity to proteins involved in redox transport in cytochrome c biogenesis. ORF3 could encode a periplasmic polypeptide of 186 amino acids of 20,638 Da with a similarity to thioredoxin-like proteins and with a putative signal peptide of 21 amino acids. Purified SoxXA, SoxYZ, and SoxB are essential for thiosulfate or sulfite-dependent cytochrome c reduction in vitro. N-terminal and internal amino acid sequences identified SoxX, SoxY, SoxZ, and SoxA to be coded by the respective genes. The molecular masses of the mature proteins determined by electrospray ionization spectroscopy (SoxX, 14,834 Da; SoxY, 11,094 Da; SoxZ, 11,717 Da; and SoxA, 30,452 Da) were identical or close to those deduced from the nucleotide sequence with differences for the covalent heme moieties. SoxXA represents a novel type of periplasmic c-type cytochromes, with SoxX as a monoheme and SoxA as a hybrid diheme cytochrome c. SoxYZ is an as-yet-unprecedented soluble protein. SoxY has a putative signal peptide with a twin arginine motif and possibly cotransports SoxZ to the periplasm. SoxYZ neither contains a metal nor a complex redox center, as proposed for proteins likely to be transported via the Tat system. 2000
210894738A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. Mukhopadhyaya PN, Deb C, Lahiri C, Roy P. A mobilizable suicide vector, pSUP5011, was used to introduce Tn5-mob in a new facultative sulfur lithotrophic bacterium, KCT001, to generate mutants defective in sulfur oxidation (Sox(-)). The Sox(-) mutants were unable to oxidize thiosulfate while grown mixotrophically in the presence of thiosulfate and succinate. The mutants were also impaired in oxidizing other reduced sulfur compounds and elemental sulfur as evident from the study of substrate oxidation by the whole cells. Sulfite oxidase activity was significantly diminished in the cell extracts of all the mutants. A soxA gene was identified from the transposon-adjacent genomic DNA of a Sox(-) mutant strain. The sequence analysis revealed that the soxA open reading frame (ORF) is preceded by a potential ribosome binding site and promoter region with -10- and -35-like sequences. The deduced nucleotide sequence of the soxA gene was predicted to code for a protein of 286 amino acids. It had a signal peptide of 26 N-terminal amino acids. The amino acid sequence showed similarity with a putative gene product of Aquifex aeolicus, soluble cytochrome c(551) of Chlorobium limicola, and the available partial SoxA sequence of Paracoccus denitrificans. The soxA-encoded product seems to be a diheme cytochrome c for KCT001 and A. aeolicus, but the amino acid sequence of C. limicola cytochrome c(551) revealed a single heme-binding region. Another transposon insertion mutation was mapped within the soxA ORF. Four other independent transposon insertion mutations were mapped in the 4.4-kb soxA contiguous genomic DNA region. The results thus suggest that a sox locus of KCT001, essential for sulfur oxidation, was affected by all these six independent insertion mutations. 2000
325673696Mechanism of thiosulfate oxidation in the SoxA family of cysteine-ligated cytochromes. Grabarczyk DB, Chappell PE, Eisel B, Johnson S, Lea SM, Berks BC. Thiosulfate dehydrogenase (TsdA) catalyzes the oxidation of two thiosulfate molecules to form tetrathionate and is predicted to use an unusual cysteine-ligated heme as the catalytic cofactor. We have determined the structure of Allochromatium vinosum TsdA to a resolution of 1.3 Å. This structure confirms the active site heme ligation, identifies a thiosulfate binding site within the active site cavity, and reveals an electron transfer route from the catalytic heme, through a second heme group to the external electron acceptor. We provide multiple lines of evidence that the catalytic reaction proceeds through the intermediate formation of a S-thiosulfonate derivative of the heme cysteine ligand: the cysteine is reactive and is accessible to electrophilic attack; cysteine S-thiosulfonate is formed by the addition of thiosulfate or following the reverse reaction with tetrathionate; the S-thiosulfonate modification is removed through catalysis; and alkylating the cysteine blocks activity. Active site amino acid residues required for catalysis were identified by mutagenesis and are inferred to also play a role in stabilizing the S-thiosulfonate intermediate. The enzyme SoxAX, which catalyzes the first step in the bacterial Sox thiosulfate oxidation pathway, is homologous to TsdA and can be inferred to use a related catalytic mechanism. 2015
411567011Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum. Appia-Ayme C, Little PJ, Matsumoto Y, Leech AP, Berks BC. Many photosynthetic bacteria use inorganic sulfur compounds as electron donors for carbon dioxide fixation. A thiosulfate-induced cytochrome c has been purified from the photosynthetic alpha-proteobacterium Rhodovulum sulfidophilum. This cytochrome c(551) is a heterodimer of a diheme 30-kDa SoxA subunit and a monoheme 15-kDa SoxX subunit. The cytochrome c(551) structural genes are part of an 11-gene sox locus. Sequence analysis suggests that the ligands to the heme iron in SoxX are a methionine and a histidine, while both SoxA hemes are predicted to have unusual cysteine-plus-histidine coordination. A soxA mutant strain is unable to grow photoautotrophically on or oxidize either thiosulfate or sulfide. Cytochrome c(551) is thus essential for the metabolism of both these sulfur species. Periplasmic extracts of wild-type R. sulfidophilum exhibit thiosulfate:cytochrome c oxidoreductase activity. However, such activity can only be measured for a soxA mutant strain if the periplasmic extract is supplemented with purified cytochrome c(551). Gene clusters similar to the R. sulfidophilum sox locus can be found in the genome of a green sulfur bacterium and in phylogenetically diverse nonphotosynthetic autotrophs. 2001

Friedrich C G , Quentmeier A , Bardischewsky F , et al. Novel Genes Coding for Lithotrophic Sulfur Oxidation of Paracoccus pantotrophus GB17[J]. Journal of Bacteriology, 2000, 182(17):4677-4687. Ogawa T , Furusawa T , Nomura R , et al. SoxAX Binding Protein, a Novel Component of the Thiosulfate-Oxidizing Multienzyme System in the Green Sulfur Bacterium Chlorobium tepidum[J]. Journal of Bacteriology, 2008, 190(18):6097-6110.