Database Retrieval System V1.0

Name SoxS
Function
SoxS is involved in activation of the thiosulfate-oxidizing enzyme system, and we exclude the involvement of SoxS in the expression of the sox genes.
Definition Sulfur/thiosulfate oxidation protein SoxS
AA seq
MLATLTLAALAALPARATEAPAASGAVQLIMVEEAGCIWCARWNTEISEIYPKTPEGQAA PLRRIDIRDRRPDGIDFSRPLTFTPTFVLVVDGAEVARIEGYPGEDFFWGLLKMHLTEHA GFTGGA128
Structure
Reference
PMIDTitle & AuthorAbstractYear
017379716The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccus pantotrophus. Orawski G, Bardischewsky F, Quentmeier A, Rother D, Friedrich CG. The significance of the soxS gene product on chemotrophic sulfur oxidation of Paracoccus pantotrophus was investigated. The thioredoxin SoxS was purified, and the N-terminal amino acid sequence identified SoxS as the soxS gene product. The wild-type formed thiosulfate-oxidizing activity and Sox proteins during mixotrophic growth with succinate plus thiosulfate, while there was no activity, and only traces of Sox proteins, under heterotrophic conditions. The homogenote mutant strain GBOmegaS is unable to express the soxSR genes, of which soxR encodes a transcriptional regulator. Strain GBOmegaS cultivated mixotrophically showed about 22 % of the specific thiosulfate-dependent O(2) uptake rate of the wild-type, and when cultivated heterotrophically it produced 35 % activity. However, under both mixotrophic and heterotrophic conditions, strain GBOmegaS formed Sox proteins essential for sulfur oxidation in vitro at the same high level as the wild-type produced them during mixotrophic growth. Genetic complementation of strain GBOmegaS with soxS restored the activity upon mixotrophic and heterotrophic growth. Chemical complementation by reductants such as L-cysteine, DTT and tris(2-carboxyethyl)phosphine also restored the activity of strain GBOmegaS in the presence of chloramphenicol, which is an inhibitor of de novo protein synthesis. The data demonstrate that SoxS plays a key role in activation of the Sox enzyme system, and this suggests that SoxS is part of a novel type of redox control in P. pantotrophus.2007
118599826Sulfur oxidation of Paracoccus pantotrophus: the sulfur-binding protein SoxYZ is the target of the periplasmic thiol-disulfide oxidoreductase SoxS. Rother D, Ringk J, Friedrich CG. The periplasmic thiol-disulfide oxidoreductase SoxS is essential for chemotrophic growth of Paracoccus pantotrophus with thiosulfate. To trap its periplasmic partner, the cysteine residues of the CysXaaXaaCys motif of SoxS (11 kDa) were changed to alanine by site-directed mutagenesis. The disrupted soxS gene of the homogenote mutant G OmegaS was complemented with plasmids carrying the mutated soxS[C13A] or soxS[C16A] gene. Strain G OmegaS(pRD179.6[C16A](S)) displayed a marginal thiosulfate-oxidizing activity, suggesting that Cys13(S) binds the target protein. Evidence is presented that SoxS specifically binds SoxY. (i) Immunoblot analysis using non-reducing SDS gel electrophoresis and anti-SoxS and anti-SoxYZ antibodies identified the respective antigens of strain G OmegaS(pRD179.6[C16A](S)) at the 25 kDa position, suggesting an adduct of about 14 kDa, close to the value expected for SoxY migration. (ii) A mutant unable to produce SoxYZ, such as strain G OmegaX(pRD187.7[C16A](S)), did not form a SoxS(C16A) adduct, while addition of homogeneous SoxYZ resulted in the 25 kDa adduct. (iii) The SoxY and SoxZ subunits were distinguished by site-directed mutagenesis of the cysteine residue in SoxZ. SoxYZ(C53S) formed the 25 kDa adduct with SoxS(C16A). These results demonstrate that the target of SoxS is the sulfur-binding protein SoxY of the SoxYZ complex. As SoxYZ is reversibly inactivated, SoxS may activate SoxYZ as a crucial function for chemotrophy of P. pantotrophus. 2008
216183190Structural insight into the interactions of SoxV, SoxW and SoxS in the process of transport of reductants during sulfur oxidation by the novel global sulfur oxidation reaction cycle. Bagchi A, Ghosh TC. Microbial redox reactions involving inorganic sulfur compounds, mainly the sulfur anions, are one of the vital reactions responsible for the environmental sulfur balance. These reactions are mediated by phylogenetically diverse prokaryotes, some of which also take part in the extraction of metal ions from their sulfur containing ores. These sulfur oxidizers oxidize inorganic sulfur compounds like sulfide, thiosulfate etc. to produce reductants that are used for carbon dioxide fixation or in respiratory electron transfer chains. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 15 genes, forming two transcriptional units, viz., soxSR and soxVWXYZABCDEFGH. SoxV is known to be a CcdA homolog involved in the transport of reductants from cytoplasm to periplasm. SoxW and SoxS are periplasmic thioredoxins, which (SoxW) interact with SoxV and thereby help in the redox reactions. We have employed homology modeling to construct the three-dimensional structures of the SoxV, SoxW and SoxS proteins from Rhodovulum sulfidophilum. With the help of docking and molecular dynamics simulations we have identified the amino acid residues of these proteins involved in the interaction. The probable biochemical mechanism of the transport of reductants through the interactions of these proteins has also been investigated. Our study provides a rational basis to interpret the molecular mechanism of the biochemistry of sulfur anion oxidation reactions by these ecologically important organisms. 2006
316528465A novel gene cluster soxSRT is essential for the chemolithotrophic oxidation of thiosulfate and tetrathionate by Pseudaminobacter salicylatoxidans KCT001. Lahiri C, Mandal S, Ghosh W, Dam B, Roy P.Chemolithotrophic sulfur oxidation (Sox) in the alpha-proteobacterium Pseudaminobacter salicylatoxidans KCT001 was found to be governed by the gene cluster soxSRT-soxVWXYZABCD. Independent transposon-insertion mutations in the genes soxB, soxC, soxD, and also in a novel open reading frame (ORF), designated as soxT, afforded revelation of the entire sox locus of this bacterium. The deduced amino acid sequence of the novel ORF soxT comprised 362 residues and exhibited significant homology with hypothetical proteins of diverse origin, including a permease-like transport protein of Escherichia coli. Two contiguous ORFs, soxR and soxS, immediately preceded the soxT gene. The gene cluster soxSRT was located upstream of soxVWXYZABCD and was transcribed divergently with respect to the latter. Chemolithotrophic utilization of both thiosulfate and tetrathionate was observed to have been impaired in all of these Sox- mutants, implicating the involvement of the gene cluster soxSRT-soxVWXYZABCD in the oxidation of both thiosulfate and tetrathionate. 2006
415870478SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus. Rother D, Orawski G, Bardischewsky F, Friedrich CG. Paracoccus pantotrophus GB17 requires thiosulfate for induction of the sulfur-oxidizing (Sox) enzyme system. The soxRS genes are divergently oriented to the soxVWXYZA-H genes. soxR predicts a transcriptional regulator of the ArsR family and soxS a periplasmic thioredoxin. The homogenate mutant GBOmegaS carrying a disruption of soxS by the Omega-kanamycin-resistance-encoding interposon expressed a low thiosulfate-oxidizing activity under heterotrophic and mixotrophic growth conditions. This activity was repressed by complementation with soxR, suggesting that SoxR acts as a repressor and SoxS is essential for full expression. Sequence analysis uncovered operator characteristics in the intergenic regions soxS-soxV and soxW-soxX. In each region a transcription start site was identified by primer extension analysis. Both regions were cloned into the vector pRI1 and transferred to P. pantotrophus. Strains harbouring pRI1 with soxS-soxV or soxW-soxX expressed the sox genes under heterotrophic conditions at a low rate, indicating repressor titration. Sequence analysis of SoxR suggested a helix-turn-helix (HTH) motif at position 87-108 and uncovered an invariant Cys-80 and a cysteine residue at the C-terminus. SoxR was overproduced in Escherichia coli with an N-terminal His6-tag and purified to near homogeneity. Electrophoretic gel mobility shift assays with SoxR retarded the soxS-soxV region as a single band while the soxW-soxX region revealed at least two protein-DNA complexes. These data demonstrated binding of SoxR to the relevant DNA. This is believed to be the first report of regulation of chemotrophic sulfur oxidation at the molecular level. 2005

Orawski G , Bardischewsky F , Quentmeier A , et al. The periplasmic thioredoxin SoxS plays a key role in activation in vivo of chemotrophic sulfur oxidation of Paracoccus pantotrophus[J]. Microbiology, 2007, 153(4):1081-1086.