Database Retrieval System V1.0

Name dddL
Function
dimethylpropiothetin dethiomethylase activity.
Definition dimethylpropiothetin dethiomethylase [EC:4.4.1.3]
AA seq
MSDDMMGDVPEDGSAAAAPPVTVDTAGAVSAPSRLRDHPNWYYLLREFYELYRFLPSGGS DRIRGHQRAVRERISALIQTNALLRFGACEEKPVTAYLRRVLDEGRVEKHAPVIRAIDAV RASLNWQYGYDKIPRGLSQKFAYAEIAGPNAPIHSEAVILGLVLFAPGCTYPTHAHDGIT ESYVCLSGAVSENHQGVYAPGSLIFNPPGQHHRITVSDREPSLLAYAWIGTREKLSHQKM AFSRAPRKRA254
Structure
Reference
PMIDTitle & AuthorAbstractYear
029561599The Dimethylsulfoniopropionate (DMSP) Lyase and Lyase-Like Cupin Family Consists of Bona Fide DMSP lyases as Well as Other Enzymes with Unknown Function Lei Lei , Kesava Phaneendra Cherukuri , Uria Alcolombri , Diana Meltzer , Dan S Tawfik Marine organisms release dimethylsulfide (DMS) via cleavage of dimethylsulfoniopropionate (DMSP). Different genes encoding proteins with DMSP lyase activity are known, yet these exhibit highly variable levels of activity. Most assigned bacterial DMSP lyases, including DddK, DddL, DddQ, DddW, and DddY, appear to belong to one, cupin-like superfamily. Here, we attempted to define and map this superfamily dubbed cupin-DLL (DMSP lyases and lyase-like). To this end, we have pursued the characterization of various recombinant DMSP lyases belonging to this superfamily of metalloenzymes, and especially of DddY and DddL that seem to be the most active DMSP lyases in this superfamily. We identified two conserved sequence motifs that characterize this superfamily. These motifs include the metal-ligating residues that are absolutely essential and other residues including an active site tyrosine that seems to play a relatively minor role in DMSP lysis. We also identified a transition metal chelator, N, N, N', N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamine (TPEN), that selectively inhibits all known members of the cupin-DLL superfamily that exhibit DMSP lyase activity. A phylogenetic analysis indicated that the known DMSP lyase families are sporadically distributed suggesting that DMSP lyases evolved within this superfamily multiple times. However, unusually low specific DMSP lyase activity and genome context analysis suggest that DMSP lyase is not the native function of most cupin-DLL families. Indeed, a systematic profiling of substrate selectivity with a series of DMSP analogues indicated that some members, most distinctly DddY and DddL, are bona fide DMSP lyases, while others, foremost DddQ, may only exhibit promiscuous DMSP lyase activity.2018
127604458Diversity of bacterial dimethylsulfoniopropionate degradation genes in surface seawater of Arctic Kongsfjorden Yin-Xin Zeng , Zong-Yun Qiao , Yong Yu , Hui-Rong Li , Wei Luo Dimethylsulfoniopropionate (DMSP), which is the major source of organic sulfur in the world's oceans, plays a significant role in the global sulfur cycle. This compound is rapidly degraded by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methylmercaptopropionate (MMPA). The diversity of genes encoding bacterial demethylation (dmdA) and DMS production (dddL and dddP) were measured in Arctic Kongsfjorden. Both dmdA and dddL genes were detected in all stations along a transect from the outer to the inner fjord, while dddP gene was only found in the outer and middle parts of the fjord. The dmdA gene was completely confined to the Roseobacter clade, while the dddL gene was confined to the genus Sulfitobacter. Although the dddP gene pool was also dominated by homologs from the Roseobacter clade, there were a few dddP genes showing close relationships to both Alphaproteobacter and Gammaproteobacter. The results of this study suggest that the Roseobacter clade may play an important role in DMSP catabolism via both demethylation and cleavage pathways in surface waters of Kongsfjorden during summer.2016
218237308Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria and Rhodobacter sphaeroides. A R J Curson , R Rogers, J D Todd, C A Brearley, A W B JohnstonThe alpha-proteobacterium Sulfitobacter EE-36 makes the gas dimethylsulfide (DMS) from dimethylsulfoniopropionate (DMSP), an abundant antistress molecule made by many marine phytoplankton. We screened a cosmid library of Sulfitobacter for clones that conferred to other bacteria the ability to make DMS. One gene, termed dddL, was sufficient for this phenotype when cloned in pET21a and introduced into Escherichia coli. Close DddL homologues exist in the marine alpha-proteobacteria Fulvimarina, Loktanella Oceanicola and Stappia, all of which made DMS when grown on DMSP. There was also a dddL homologue in Rhodobacter sphaeroides strain 2.4.1, but not in strain ATCC 17025; significantly, the former, but not the latter, emits DMS when grown with DMSP. Escherichia coli containing the cloned, overexpressed dddL genes of R. sphaeroides 2.4.1 and Sulfitobacter could convert DMSP to acrylate plus DMS. This is the first identification of such a 'DMSP lyase'. Thus, DMS can be made either by this DddL lyase or by a DMSP acyl CoA transferase, specified by dddD, a gene that we had identified in several other marine bacteria.2008

Curson A R J , Rogers R , Todd J D , et al. Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates the climate‐changing gas dimethylsulfide in several marine α‐proteobacteria and Rhodobacter sphaeroides[J]. Environmental Microbiology, 2008, 10(3).