Database Retrieval System V1.0

Name soxX
Function
electron transfer activity.
Definition Sulfur oxidation protein SoxX.
AA seq
MKKTVMISLLVSASLFAADYSSVIEKPNASELIQKDLLAPAKTFTMPAGCITTDPKAIAR GAFIFHNLNGSKVKGDTPEGLAKKQMQEGKTYMPGDKIPDKQYGNCVACHNIEGAKGAGN IGPDLTGYKDMFMATGVRDNQFVFQKIADPRIDNKDTHMTVNLTTKLFTTKEICEITSYI VSPK187
Structure
Reference
PMIDTitle & AuthorAbstractYear
010940005Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. Friedrich CG, Quentmeier A, Bardischewsky F, Rother D, Kraft R, Kostka S, Prinz H. The gene region coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17 is located on a 13-kb insert of plasmid pEG12. Upstream of the previously described six open reading frames (ORFs) soxABCDEF with a partial sequence of soxA and soxF (C. Wodara, F. Bardischewsky, and C. G. Friedrich, J. Bacteriol. 179:5014-5023, 1997), 4,350 bp were sequenced. The sequence completed soxA, and uncovered six new ORFs upstream of soxA, designated ORF1, ORF2, and ORF3, and soxXYZ. ORF1 could encode a 275-amino-acid polypeptide of 29,332 Da with a 61 to 63% similarity to LysR transcriptional regulators. ORF2 could encode a 245-amino-acid polypeptide of 26,022 Da with the potential to form six transmembrane helices and with a 48 to 51% similarity to proteins involved in redox transport in cytochrome c biogenesis. ORF3 could encode a periplasmic polypeptide of 186 amino acids of 20,638 Da with a similarity to thioredoxin-like proteins and with a putative signal peptide of 21 amino acids. Purified SoxXA, SoxYZ, and SoxB are essential for thiosulfate or sulfite-dependent cytochrome c reduction in vitro. N-terminal and internal amino acid sequences identified SoxX, SoxY, SoxZ, and SoxA to be coded by the respective genes. The molecular masses of the mature proteins determined by electrospray ionization spectroscopy (SoxX, 14,834 Da; SoxY, 11,094 Da; SoxZ, 11,717 Da; and SoxA, 30,452 Da) were identical or close to those deduced from the nucleotide sequence with differences for the covalent heme moieties. SoxXA represents a novel type of periplasmic c-type cytochromes, with SoxX as a monoheme and SoxA as a hybrid diheme cytochrome c. SoxYZ is an as-yet-unprecedented soluble protein. SoxY has a putative signal peptide with a twin arginine motif and possibly cotransports SoxZ to the periplasm. SoxYZ neither contains a metal nor a complex redox center, as proposed for proteins likely to be transported via the Tat system. 2000
118641134SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. Ogawa T, Furusawa T, Nomura R, Seo D, Hosoya-Matsuda N, Sakurai H, Inoue K. From the photosynthetic green sulfur bacterium Chlorobium tepidum (pro synon. Chlorobaculum tepidum), we have purified three factors indispensable for the thiosulfate-dependent reduction of the small, monoheme cytochrome c(554). These are homologues of sulfur-oxidizing (Sox) system factors found in various thiosulfate-oxidizing bacteria. The first factor is SoxYZ that serves as the acceptor for the reaction intermediates. The second factor is monomeric SoxB that is proposed to catalyze the hydrolytic cleavage of sulfate from the SoxYZ-bound oxidized product of thiosulfate. The third factor is the trimeric cytochrome c(551), composed of the monoheme cytochrome SoxA, the monoheme cytochrome SoxX, and the product of the hypothetical open reading frame CT1020. The last three components were expressed separately in Escherichia coli cells and purified to homogeneity. In the presence of the other two Sox factors, the recombinant SoxA and SoxX showed a low but discernible thiosulfate-dependent cytochrome c(554) reduction activity. The further addition of the recombinant CT1020 protein greatly increased the activity, and the total activity was as high as that of the native SoxAX-CT1020 protein complex. The recombinant CT1020 protein participated in the formation of a tight complex with SoxA and SoxX and will be referred to as SAXB (SoxAX binding protein). Homologues of the SAXB gene are found in many strains, comprising roughly about one-third of the thiosulfate-oxidizing bacteria whose sox gene cluster sequences have been deposited so far and ranging over the Chlorobiaciae, Chromatiaceae, Hydrogenophilaceae, Oceanospirillaceae, etc. Each of the deduced SoxA and SoxX proteins of these bacteria constitute groups that are distinct from those found in bacteria that apparently lack SAXB gene homologues. 2008
212147345The cytochrome complex SoxXA of Paracoccus pantotrophus is produced in Escherichia coli and functional in the reconstituted sulfur-oxidizing enzyme system. Rother D, Friedrich CG. The heterodimeric c-type cytochrome complex SoxXA of Paracoccus pantotrophus was produced in Escherichia coli. The soxX and soxA genes, separated by two genes in the sox gene cluster of P. pantotrophus, were fused with ribosome binding sites optimal for E. coli and combined to give soxXA in pRD133.27. The cytochrome complex SoxXA was produced in E. coli M15 containing pRD133.27, pREP4 encoding the Lac repressor and plasmid pEC86, carrying essential cytochrome c maturation genes. SoxX and SoxA were formed in a ratio of about 2.5:1. SoxA appeared to be unstable when not complexed with SoxX. The cytochrome complex SoxXA, purified to homogeneity from periplasmic extracts of E. coli M15 (pRD133.27, pREP4, pEC86), exhibited identical biochemical and biophysical properties as compared to SoxXA of P. pantotrophus. Moreover, this cytochrome complex was shown to be equally catalytically active with respect to rates and reactivity with different sulfur substrates in the reconstituted sulfur-oxidizing enzyme system using homogeneous Sox-proteins of P. pantotrophus. Homogeneous SoxX was catalytically inactive. 2002
322907414The bacterial SoxAX cytochromes. Kappler U, Maher MJ. SoxAX cytochromes are heme-thiolate proteins that play a key role in bacterial thiosulfate oxidation, where they initiate the reaction cycle of a multi-enzyme complex by catalyzing the attachment of sulfur substrates such as thiosulfate to a conserved cysteine present in a carrier protein. SoxAX proteins have a wide phylogenetic distribution and form a family with at least three distinct types of SoxAX protein. The types of SoxAX cytochromes differ in terms of the number of heme groups present in the proteins (there are diheme and triheme versions) as well as in their subunit structure. While two of the SoxAX protein types are heterodimers, the third group contains an additional subunit, SoxK, that stabilizes the complex of the SoxA and SoxX proteins. Crystal structures are available for representatives of the two heterodimeric SoxAX protein types and both of these have shown that the cysteine ligand to the SoxA active site heme carries a modification to a cysteine persulfide that implicates this ligand in catalysis. EPR studies of SoxAX proteins have also revealed a high complexity of heme dependent signals associated with this active site heme; however, the exact mechanism of catalysis is still unclear at present, as is the exact number and types of redox centres involved in the reaction. 2013
426956550RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. Christel S, Fridlund J, Buetti-Dinh A, Buck M, Watkin EL, Dopson M. Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining. 2016

Friedrich C G , Quentmeier A , Bardischewsky F , et al. Novel Genes Coding for Lithotrophic Sulfur Oxidation of Paracoccus pantotrophus GB17[J]. Journal of Bacteriology, 2000, 182(17):4677-4687.