Database Retrieval System V1.0

Name soxY
Function
oxidoreductase activity.
Definition sulfur-oxidizing protein SoxY
AA seq
MSTDMKRRIFLKGSLAAGAVGMAAGAGLLMPQQVLAAWPSAAFEAKEIPAALSALMGSDT SEPSTDIRVKAPDIAENGAVVPVTVETSIGGVESIAIIASNNPVPLVASFNLGQGASGFV STRIKMGKTGDVIGVVKAGGKLYSARKGVKVTIGGCGG160
Structure
Reference
PMIDTitle & AuthorAbstractYear
016084835A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon. Bagchi A, Ghosh TC. Microbial redox reactions of inorganic sulfur compounds, mainly the sulfur anions, are one of the vital reactions responsible for the environmental sulfur balance. These reactions are mediated by phylogenetically diverse prokaryotes, which also take part in the extraction of metal ions from their sulfur containing ores. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 16 genes, forming two transcriptional units, viz., soxSRT and soxVWXYZABCDEFGH. SoxY is known to be a sulfur covalently binding protein, which binds sulfur anions (such as sulfate) to form SoxY-thiocysteine-S-sulfate, the first covalently bound sulfur adduct in the novel global sulfur anion oxidation cycle. SoxZ, a sulfur compound chelating protein, binds to SoxY forming a complex to which SoxB, a sulfate thiol-esterase, binds and ultimately cleaves the sulfur adduct. We employed homology modeling to construct the three-dimensional structures of the SoxY, SoxZ, and SoxB from Paracoccus pantotrophus. With the help of docking and molecular dynamics studies we have identified the residues of SoxY, SoxZ, and SoxB involved in the interaction. The probable mechanisms of the binding of SoxY with sulfate as well as the removal of sulfate from the SoxYZ complex are also established. Our study provides a rational basis to illustrate the molecular mechanism of the biochemistry of sulfur anion oxidation reactions by these industrially important organisms. 2005
123053932Structural insight into the mode of interactions of SoxL from Allochromatium vinosum in the global sulfur oxidation cycle. Bagchi A. Microbial redox reactions of inorganic sulfur compounds are one of the important reactions for the recycling of sulfur to maintain the environmental sulfur balance. These reactions are carried out by phylogenetically diverse microorganisms. The sulfur oxidizing gene cluster (sox) of α-proteobacteria, Allochromatium vinosum comprises two divergently transcribed units. The central players of this process are SoxY, SoxZ and SoxL. SoxY is sulfur compound binder which binds to sulfur anions with the help of SoxZ. SoxL is a rhodanese like protein, which then cleaves off the sulfur substrate from the SoxYZ complex to recycle the SoxY and SoxZ. In the present work, homology modeling has been employed to build the three dimensional structures of SoxY, SoxZ and SoxL. With the help of docking simulations the amino acid residues of these proteins involved in the interactions have been identified. The interactions between the SoxY, SoxZ and SoxL proteins are mediated mainly through hydrogen bonding. Strong positive fields created by the SoxZ and SoxL proteins are found to be responsible for the binding and removal of the sulfur anion. The probable biochemical mechanism of sulfur anion oxidation process has been identified. 2012
214651972Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG. The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, formed complexes with subunits associated and covalently bound. In denaturing SDS-polyacrylamide gel electrophoresis (PAGE) SoxY migrated at 12 and SoxZ at 16kDa. SDS-PAGE of homogeneous SoxYZ without reductant separated dimeric complexes of 25, 29, and 32kDa identified by the N-terminal amino acid sequences as SoxY-Y, SoxY-Z, and SoxZ-Z, and subunit cleavage by reduction suggested their linkage via protein disulfide bonds. SoxYZ was reversibly redox active between -0.25 and 0.2V, as monitored by a combined electrochemical and FTIR spectroscopic approach. The dimanganese SoxB protein (58.611Da) converted the covalently linked heterodimer SoxY-Z to SoxYZ with associated subunits which in turn aggregated to the heterotetramer Sox(YZ)(2). This reaction depended on time and the SoxB concentration, and demonstrated the interaction of these two Sox proteins. 2003
320173070Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum. Masuda S, Eda S, Ikeda S, Mitsui H, Minamisawa K. Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in Alphaproteobacteria, left B. japonicum unable to oxidize thiosulfate and grow under chemolithotrophic conditions, whereas the deletion mutation of the soxY(2) gene at sox locus II, homologous to the Sox system in green sulfur bacteria, produced phenotypes similar to those of wild-type USDA110. Thiosulfate-dependent O(2) respiration was observed only in USDA110 and the soxY(2) mutant and not in the soxY(1) mutant. In the cells, 1 mol of thiosulfate was stoichiometrically converted to approximately 2 mol of sulfate and consumed approximately 2 mol of O(2). B. japonicum USDA110 showed (14)CO(2) fixation under chemolithotrophic growth conditions. The CO(2) fixation of resting cells was significantly dependent on thiosulfate addition. These results show that USDA110 is able to grow chemolithoautotrophically using thiosulfate as an electron donor, oxygen as an electron acceptor, and carbon dioxide as a carbon source, which likely depends on sox locus I including the soxY(1) gene on USDA110 genome. Thiosulfate oxidation capability is frequently found in members of the Bradyrhizobiaceae, which phylogenetic analysis showed to be associated with the presence of sox locus I homologues, including the soxY(1) gene of B. japonicum USDA110. 2010
418834882Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus. Quentmeier A, Li L, Friedrich CG. The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, reacts with three different Sox proteins. Its active site Cys110(Y) is on the carboxy-terminus of the SoxY subunit. SoxYZ "as isolated" consisted mainly of the catalytically inactive SoxY-Y(Z)(2) heterotetramer linked by a Cys110(Y)-Cys110(Y) interprotein disulfide. Sulfide activated SoxYZ "as isolated" 456-fold, reduced the disulfide, and yielded an active SoxYZ heterodimer. The reductant tris(2-carboxyethyl)phosphine (TCEP) inactivated SoxYZ. This form was not re-activated by sulfide, which identified it as a different inactive form. In analytical gel filtration, the elution of "TCEP-treated" SoxYZ was retarded compared to active SoxYZ, indicating a conformational change. The possible enzymes involved in the re-activation of each inactive form of SoxYZ are discussed. 2008

Falkenby L G , Szymanska M , Holkenbrink C , et al. Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium[J]. Fems Microbiology Letters, 2011, 323(2):142-150.