Database Retrieval System V1.0

Name soxZ
Function
Sulfur-oxidizing protein.
Definition sulfur-oxidizing protein SoxZ
AA seq
MASIKLKPKAKKGVISIKCLIKHPMETGLRKKKGKIVPANYIENIVILHNGNKIVDADIG ISISKNPYFKFKVPGKKGDIIELKYNSNKGETGSATVKSK101
Structure
Reference
PMIDTitle & AuthorAbstractYear
016084835A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon. Bagchi A, Ghosh TC. Microbial redox reactions of inorganic sulfur compounds, mainly the sulfur anions, are one of the vital reactions responsible for the environmental sulfur balance. These reactions are mediated by phylogenetically diverse prokaryotes, which also take part in the extraction of metal ions from their sulfur containing ores. The sulfur oxidizing gene cluster (sox) of alpha-Proteobacteria comprises of at least 16 genes, forming two transcriptional units, viz., soxSRT and soxVWXYZABCDEFGH. SoxY is known to be a sulfur covalently binding protein, which binds sulfur anions (such as sulfate) to form SoxY-thiocysteine-S-sulfate, the first covalently bound sulfur adduct in the novel global sulfur anion oxidation cycle. SoxZ, a sulfur compound chelating protein, binds to SoxY forming a complex to which SoxB, a sulfate thiol-esterase, binds and ultimately cleaves the sulfur adduct. We employed homology modeling to construct the three-dimensional structures of the SoxY, SoxZ, and SoxB from Paracoccus pantotrophus. With the help of docking and molecular dynamics studies we have identified the residues of SoxY, SoxZ, and SoxB involved in the interaction. The probable mechanisms of the binding of SoxY with sulfate as well as the removal of sulfate from the SoxYZ complex are also established. Our study provides a rational basis to illustrate the molecular mechanism of the biochemistry of sulfur anion oxidation reactions by these industrially important organisms. 2005
114651972Sulfur oxidation in Paracoccus pantotrophus: interaction of the sulfur-binding protein SoxYZ with the dimanganese SoxB protein. Quentmeier A, Hellwig P, Bardischewsky F, Grelle G, Kraft R, Friedrich CG. The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, formed complexes with subunits associated and covalently bound. In denaturing SDS-polyacrylamide gel electrophoresis (PAGE) SoxY migrated at 12 and SoxZ at 16kDa. SDS-PAGE of homogeneous SoxYZ without reductant separated dimeric complexes of 25, 29, and 32kDa identified by the N-terminal amino acid sequences as SoxY-Y, SoxY-Z, and SoxZ-Z, and subunit cleavage by reduction suggested their linkage via protein disulfide bonds. SoxYZ was reversibly redox active between -0.25 and 0.2V, as monitored by a combined electrochemical and FTIR spectroscopic approach. The dimanganese SoxB protein (58.611Da) converted the covalently linked heterodimer SoxY-Z to SoxYZ with associated subunits which in turn aggregated to the heterotetramer Sox(YZ)(2). This reaction depended on time and the SoxB concentration, and demonstrated the interaction of these two Sox proteins. 2003
217760419Activation of the heterodimeric central complex SoxYZ of chemotrophic sulfur oxidation is linked to a conformational change and SoxY-Y interprotein disulfide formation. Quentmeier A, Janning P, Hellwig P, Friedrich CG. The central protein of the four component sulfur oxidizing (Sox) enzyme system of Paracoccus pantotrophus, SoxYZ, carries at the SoxY subunit the covalently bound sulfur substrate which the other three proteins bind, oxidize, and release as sulfate. SoxYZ of different preparations resulted in different specific thiosulfate-oxidizing activities of the reconstituted Sox enzyme system. From these preparations SoxYZ was activated up to 24-fold by different reductants with disodium sulfide being the most effective and yielded a uniform specific activity of the Sox system. The activation comprised the activities with hydrogen sulfide, thiosulfate, and sulfite. Sulfide-activation decreased the predominant beta-sheet character of SoxYZ by 4%, which caused a change in its conformation as determined by infrared spectroscopy. Activation of SoxYZ by sulfide exposed the thiol of the C-terminal Cys-138 of SoxY as evident from alkylation by 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid. Also, SoxYZ activation enhanced the formation of the Sox(YZ)2 heterotetramer as evident from density gradient gel electrophoresis. The tetramer was formed due to an interprotein disulfide between SoxY to yield a SoxY-Y dimer as determined by combined high pressure liquid chromatography and mass spectrometry. The significance of the conformational change of SoxYZ and the interprotein disulfide between SoxY-Y is discussed. 2007
317522046The SoxYZ complex carries sulfur cycle intermediates on a peptide swinging arm. Sauvé V, Bruno S, Berks BC, Hemmings AM. The bacterial Sox (sulfur oxidizing) system allows the utilization of inorganic sulfur compounds in energy metabolism. Central to this process is the SoxYZ complex that carries the pathway intermediates on a cysteine residue near the C terminus of SoxY. Crystal structures have been determined for Paracoccus pantotrophus SoxYZ with the carrier cysteine in the underivatized state, conjugated to the polysulfide mimic beta-mercaptoethanol, and as the sulfonate adduct pathway intermediate. The carrier cysteine is located on a peptide swinging arm and is bracketed on either side by diglycine dipeptides acting as molecular universal joints. This structure provides a novel solution to the requirement that the cysteine-bound intermediates be able to access and orient themselves within the active sites of multiple partner enzymes. Adjacent to the swinging arm there is a conserved, deep, apolar pocket into which the beta-mercaptoethanol adduct extends. This pocket would be well suited to a role in protecting labile pathway intermediates from adventitious reactions. 2007
418834882Identification of two inactive forms of the central sulfur cycle protein SoxYZ of Paracoccus pantotrophus. Quentmeier A, Li L, Friedrich CG. The central protein of the sulfur-oxidizing enzyme system of Paracoccus pantotrophus, SoxYZ, reacts with three different Sox proteins. Its active site Cys110(Y) is on the carboxy-terminus of the SoxY subunit. SoxYZ "as isolated" consisted mainly of the catalytically inactive SoxY-Y(Z)(2) heterotetramer linked by a Cys110(Y)-Cys110(Y) interprotein disulfide. Sulfide activated SoxYZ "as isolated" 456-fold, reduced the disulfide, and yielded an active SoxYZ heterodimer. The reductant tris(2-carboxyethyl)phosphine (TCEP) inactivated SoxYZ. This form was not re-activated by sulfide, which identified it as a different inactive form. In analytical gel filtration, the elution of "TCEP-treated" SoxYZ was retarded compared to active SoxYZ, indicating a conformational change. The possible enzymes involved in the re-activation of each inactive form of SoxYZ are discussed. 2008

Falkenby L G , Szymanska M , Holkenbrink C , et al. Quantitative proteomics of Chlorobaculum tepidum: insights into the sulfur metabolism of a phototrophic green sulfur bacterium[J]. Fems Microbiology Letters, 2011, 323(2):142-150.