Reference |
| PMID | Title & Author | Abstract | Year |
0 | 19581363 | Bifurcated degradative pathway of 3-sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)-cysteate sulfolyase. Denger K, Mayer J, Buhmann M, Weinitschke S, Smits TH, Cook AM. | Data from the genome sequence of the aerobic, marine bacterium Roseovarius nubinhibens ISM were interpreted such that 3-sulfolactate would be degraded as a sole source of carbon and energy for growth via a novel bifurcated pathway including two known desulfonative enzymes, sulfoacetaldehyde acetyltransferase (EC 2.3.3.15) (Xsc) and cysteate sulfo-lyase (EC 4.4.1.25) (CuyA). Strain ISM utilized sulfolactate quantitatively with stoichiometric excretion of the sulfonate sulfur as sulfate. A combination of enzyme assays, analytical chemistry, enzyme purification, peptide mass fingerprinting, and reverse transcription-PCR data supported the presence of an inducible, tripartite sulfolactate uptake system (SlcHFG), and a membrane-bound sulfolactate dehydrogenase (SlcD) which generated 3-sulfopyruvate, the point of bifurcation. 3-Sulfopyruvate was in part decarboxylated by 3-sulfopyruvate decarboxylase (EC 4.1.1.79) (ComDE), which was purified. The sulfoacetaldehyde that was formed was desulfonated by Xsc, which was identified, and the acetyl phosphate was converted to acetyl-coenzyme A by phosphate acetyltransferase (Pta). The other portion of the 3-sulfopyruvate was transaminated to (S)-cysteate, which was desulfonated by CuyA, which was identified. The sulfite that was formed was presumably exported by CuyZ (TC 9.B.7.1.1 in the transport classification system), and a periplasmic sulfite dehydrogenase is presumed. Bioinformatic analyses indicated that transporter SlcHFG is rare but that SlcD is involved in three different combinations of pathways, the bifurcated pathway shown here, via CuyA alone, and via Xsc alone. This novel pathway involves ComDE in biodegradation, whereas it was discovered in the biosynthesis of coenzyme M. The different pathways of desulfonation of sulfolactate presumably represent final steps in the biodegradation of sulfoquinovose (and exudates derived from it) in marine and aquatic environments. | 2009 |
1 | 26195800 | Entner-Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Felux AK, Spiteller D, Klebensberger J, Schleheck D. | Sulfoquinovose (SQ; 6-deoxy-6-sulfoglucose) is the polar head group of the plant sulfolipid SQ-diacylglycerol, and SQ comprises a major proportion of the organosulfur in nature, where it is degraded by bacteria. A first degradation pathway for SQ has been demonstrated recently, a "sulfoglycolytic" pathway, in addition to the classical glycolytic (Embden-Meyerhof) pathway in Escherichia coli K-12; half of the carbon of SQ is abstracted as dihydroxyacetonephosphate (DHAP) and used for growth, whereas a C3-organosulfonate, 2,3-dihydroxypropane sulfonate (DHPS), is excreted. The environmental isolate Pseudomonas putida SQ1 is also able to use SQ for growth, and excretes a different C3-organosulfonate, 3-sulfolactate (SL). In this study, we revealed the catabolic pathway for SQ in P. putida SQ1 through differential proteomics and transcriptional analyses, by in vitro reconstitution of the complete pathway by five heterologously produced enzymes, and by identification of all four organosulfonate intermediates. The pathway follows a reaction sequence analogous to the Entner-Doudoroff pathway for glucose-6-phosphate: It involves an NAD(+)-dependent SQ dehydrogenase, 6-deoxy-6-sulfogluconolactone (SGL) lactonase, 6-deoxy-6-sulfogluconate (SG) dehydratase, and 2-keto-3,6-dideoxy-6-sulfogluconate (KDSG) aldolase. The aldolase reaction yields pyruvate, which supports growth of P. putida, and 3-sulfolactaldehyde (SLA), which is oxidized to SL by an NAD(P)(+)-dependent SLA dehydrogenase. All five enzymes are encoded in a single gene cluster that includes, for example, genes for transport and regulation. Homologous gene clusters were found in genomes of other P. putida strains, in other gamma-Proteobacteria, and in beta- and alpha-Proteobacteria, for example, in genomes of Enterobacteria, Vibrio, and Halomonas species, and in typical soil bacteria, such as Burkholderia, Herbaspirillum, and Rhizobium. | 2015 |
2 | 12358600 | Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Ruff J, Denger K, Cook AM. | The facultatively anaerobic bacterium Alcaligenes defragrans NKNTAU was found to oxidize taurine (2-aminoethanesulphonate) with nitrate as the terminal electron acceptor. Taurine was transaminated to 2-sulphoacetaldehyde. This was not converted into sulphite and acetate by a "sulphoacetaldehyde sulpho-lyase" (EC 4.4.1.12), but into sulphite and acetyl phosphate, which was identified by three methods. The enzyme, which required the addition of phosphate, thiamin diphosphate and Mg(2+) ions for activity, was renamed sulphoacetaldehyde acetyltransferase (Xsc; EC 2.3.1.-). Inducible Xsc was expressed at high levels, and a three-step 11-fold purification yielded an essentially homogeneous soluble protein, which was a homotetramer in its native form; the molecular mass of the subunit was found to be between about 63 kDa (SDS/PAGE) and 65.3 kDa (matrix-assisted laser-desorption ionization-time-of-flight MS). The N-terminal and two internal amino acid sequences were determined, and PCR primers were generated. The xsc gene was amplified and sequenced; the derived molecular mass of the processed protein was 65.0 kDa. The downstream gene presumably encoded the inducible phosphate acetyltransferase (Pta) found in crude extracts. The desulphonative enzymes ("EC 4.4.1.12") from Achromobacter xylosoxidans NCIMB 10751 and Desulfonispora thiosulfatigenes GKNTAU were shown to be Xscs. We detected at least three subclasses of xsc in Proteobacteria and in Gram-positive bacteria, and they comprised a distinct group within the acetohydroxyacid synthase supergene family. Genome sequencing data revealed xsc genes in Burkholderia fungorum (80% sequence identity) and Sinorhizobium meliloti (61%) with closely linked pta genes. Different patterns of regulation for the transport and dissimilation of taurine were hypothesized for S. meliloti and B. fungorum. | 2003 |
3 | 15073291 | Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Brüggemann C, Denger K, Cook AM, Ruff J. | Growth of the alpha-proteobacterium Paracoccus denitrificans NKNIS with taurine or isethionate as sole source of carbon involves sulfoacetaldehyde acetyltransferase (Xsc), which is presumably encoded by an xsc gene in subgroup 3, none of whose gene products has been characterized. The genome of the alpha-proteobacterium Rhodobacter sphaeroides 2.4.1 was interpreted to contain a nine-gene cluster encoding the inducible dissimilation of taurine, and this deduced pathway included a regulator, a tripartite ATP-independent transporter, taurine dehydrogenase (TDH; presumably TauXY) as well as Xsc (subgroup 3), a hypothetical protein and phosphate acetyltransferase (Pta). A similar cluster was found in P. denitrificans NKNIS, in contrast to an analogous cluster encoding an ATP-binding cassette transporter in Paracoccus pantotrophus. Inducible TDH, Xsc and Pta were found in extracts of taurine-grown cells of strain NKNIS. TDH oxidized taurine to sulfoacetaldehyde and ammonium ion with cytochrome c as electron acceptor. Whereas Xsc and Pta were soluble enzymes, TDH was located in the particulate fraction, where inducible proteins with the expected masses of TauXY (14 and 50 kDa, respectively) were detected by SDS-PAGE. Xsc and Pta were separated by anion-exchange chromatography. Xsc was effectively pure; the molecular mass of the subunit (64 kDa) and the N-terminal amino acid sequence confirmed the identification of the xsc gene. Inducible isethionate dehydrogenase (IDH), Xsc and Pta were assayed in extracts of isethionate-grown cells of strain NKNIS. IDH was located in the particulate fraction, oxidized isethionate to sulfoacetaldehyde with cytochrome c as electron acceptor and correlated with the expression of a 62 kDa protein. Strain NKNIS excreted sulfite and sulfate during growth with a sulfonate and no sulfite dehydrogenase was detected. There is considerable biochemical, genetic and regulatory complexity in the degradation of these simple molecules. | 2004 |
4 | 22797525 | (R)-Cysteate-nitrogen assimilation by Cupriavidus necator H16 with excretion of 3-sulfolactate: a patchwork pathway. Mayer J, Denger K, Hollemeyer K, Schleheck D, Cook AM. | Cupriavidus necator H16 grew exponentially with (R)-cysteate, a structural analogue of aspartate, as sole source of nitrogen in succinate-salts medium. Utilization of cysteate was quantitative and concomitant with growth and with the excretion of the deaminated product (R)-sulfolactate, which was identified thoroughly. The deaminative pathway started with transport of (R)-cysteate into the cell, which we attributed to an aspartate transporter. Transamination to sulfopyruvate involved an aspartate/(R)-cysteate:2-oxoglutarate aminotransferase (Aoa/Coa) and regeneration of the amino group acceptor by NADP⁺-coupled glutamate dehydrogenase. Reduction of sulfopyruvate to (R)-sulfolactate was catalyzed by a (S)-malate/(R)-sulfolactate dehydrogenase (Mdh/Sdh). Excretion of the sulfolactate could be attributed to the sulfite/organosulfonate exporter TauE, which was co-encoded and co-expressed, with sulfoacetaldehyde acetyltransferase (Xsc), though Xsc was irrelevant to the current pathway. The metabolic enzymes could be assayed biochemically. Aoa/Coa and Mdh/Sdh were highly enriched by protein separation, partly characterized, and the relevant locus-tags identified by peptide-mass fingerprinting. Finally, RT-PCR was used to confirm the transcription of all appropriate genes. We thus demonstrated that Cupriavidus necator H16 uses a patchwork pathway by recruitment of 'housekeeping' genes and sulfoacetaldehyde-degradative genes to scavenge for (R)-cysteate-nitrogen. | 2012 |
Denger, K., Mayer, J., Buhmann, M., Weinitschke, S., Smits, T.H., and Cook, A.M. (2009) Bifurcated degradative pathway of 3‐sulfolactate in Roseovarius nubinhibens ISM via sulfoacetaldehyde acetyltransferase and (S)‐cysteate sulfolyase. J Bacteriol 191: 5648–5656. Felux, A.K., Spiteller, D., Klebensberger, J., and Schleheck, D. (2015) Entner‐Doudoroff pathway for sulfoquinovose degradation in Pseudomonas putida SQ1. Proc Natl Acad Sci USA 112: E4298–E4305. 4
|